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Summary. A method for assessing the �-electron contents (EC) of rings of benzenoid hydrocarbons,

based on the examination of their Kekul�ee structures, was recently put forward by Balaban and Randi�cc.

We now show that all hexagons belonging to a linear polyacene fragment of a conjugated hydrocarbon

(not necessarily benzenoid) have mutually equal EC-values.
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Introduction

In a series of recently published papers [1–4] Balaban and Randi�cc proposed a
theoretical method for (formally) distributing the �-electrons into the rings of
polycyclic conjugated molecules. Their approach was soon further elaborated by
other authors [5–8]. In Ref. [8] it was shown that the �-electron content ECðRÞ of a
ring R can be computed by means of the Pauling bond orders as shown by Eq. (1)
where Prs stands for the Pauling bond order of the carbon–carbon bond rs, whereasP

� and
P

�� indicate, respectively, summation over bonds that solely belong to
the ring R, and over bonds that are shared between R and another ring.

ECðRÞ ¼ 2
X
�

Prs þ
X
��

Prs ð1Þ

The sum of the ECðRÞ-values of all rings is equal to the total number of �-
electrons.

Recall that the Pauling bond order is defined by Eq. (2) [9, 10] where K is the
number of Kekul�ee structures of the underlying conjugated molecule, and Krs is the
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number of Kekul�ee structures in which the bond rs is double.

Prs ¼
Krs

K
ð2Þ

The condition K>0 is essential for the Balaban–Randi�cc definition of the �-
electron content of a ring. In view of this, in what follows we assume that all
conjugated systems considered Kekul�eean, i.e., possess at least one Kekul�ee structural
formula [10].

In Ref. [5] it was demonstrated that in the case of linear polyacenes, all hexa-
gons, except the two terminal hexagons, have equal EC-values. In a number of
catacondensed benzenoid molecules, whose �-electron contents were reported in
Ref. [2], an analogous regularity could be envisaged. Some typical examples of this
kind are given in Fig. 1 and Table 1. (One may observe that compounds 4 and 5
have coinciding EC-values. This is to be expected in view of the fact that EC is
defined on the basis of Kekul�ee structures, and that 4 and 5 are isoarithmic species,
in which all Kekul�ee-structure-based properties necessarily coincide [11, 12].

In order to clarify this situation we have undertaken extensive numerical studies
of benzenoid molecules containing a linear polyacene fragment, after which it
became possible to establish the following general regularity.

Let X and Y be arbitrary conjugated hydrocarbon fragments, not necessarily
catacondensed and not necessarily benzenoid. Let G be a conjugated molecule, the
structure of which is depicted in Fig. 2.

Rule 1. If G is Kekul�eean, then for arbitrary X and Y and for any h� 2, the
hexagons 1; 2; . . . ; h of G have equal �-electron contents.

Fig. 1. Heptacene and its benzo-annelated derivatives, and the labeling of its hexagons; the respec-

tive �-electron contents are given in Table 1
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Verifying Rule 1

In order to demonstrate the validity of Rule 1 we shall compute the electron content
of the i-th ring of G, and show that its value is independent of i. Bearing in mind
Eq. (1) and the labeling of the atoms of the i-th ring, shown in Fig. 2, we get
Eq. (3).

ECðiÞ ¼ 2ðPpq þ Pup þ Prs þ PstÞ þ ðPqr þ PtuÞ ð3Þ
The first term on the right-hand side of Eq. (3) is equal to 4. Namely, the sum of

Pauling bond orders over all bonds that terminate in an atom is equal to unity [13].
Therefore, Ppq þ Pup ¼ 1 and Prs þ Pst ¼ 1. We thus have Eq. (4) and what re-
mains to be calculated is Pqr and Ptu.

ECðiÞ ¼ 4 þ ðPqr þ PtuÞ ð4Þ
Because G is assumed to be Kekul�eean, the number of carbon atoms in the

fragments X and Y must be either both even or both odd. The interesting case is
when both X and Y have even number of atoms, which we examine first.

Using standard techniques for the enumeration of Kekul�ee structures [14, 15] it
can be shown that Eq. (5) is valid where the meaning of the symbols X0 and Y0 is
seen from Fig. 3.

KfGg ¼ ðh� 1ÞKfXgKfYg þ KfXgKfY0g þ KfX0gKfYg ð5Þ

Fig. 2. The general structure of a conjugated hydrocarbon containing a linear polyacene fragment

and the notation used in the proof of Rule 1; in the Kekul�ee structures of G in which the bond rq is

double, also the bonds marked by thick lines must be double

Table 1. The �-electron contents of the rings of heptacene (1) and its benzo-annelated derivatives;

for notation see Fig. 1

Compound ECðRiÞ ECðAÞ ECðBÞ ECðCÞ ECðDÞ ECðEÞ ECðFÞ
i ¼ 1; 2; 3; 4; 5

1 4.2500 4.3750 4.3750 – – – –

2 4.2667 2.8667 4.4000 5.4000 – – –

3 4.2759 1.3103 4.4138 5.4483 5.4483 – –

4 4.2857 2.8929 2.8929 5.3929 5.3929 – –

5 4.2857 2.8929 2.8929 5.3929 5.3929 – –

6 4.2963 1.3333 2.9074 5.4444 5.4444 5.3929 –

7 4.3077 1.3462 1.3462 5.4423 5.4423 5.4423 5.4423
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In order to apply Eq. (2), in addition to KfGg we have to calculate KfGprg and
KfGtug. If the bond pr is chosen to be double, then a number of other bonds of G
must also be double, see Fig. 2. Consequently, KfGprg ¼ KfXgKfYg, cf. Figs. 2
and 3. By the very same argument, KfGtug ¼ KfXgKfYg. Substituting these
expressions back into Eq. (4) we arrive at our main result (Eq. (6)) where the denomi-
nator is given by Eq. (5). According to the notation explained in Fig. 2, the parameter
i in Eq. (6) may assume any value between 1 and h. As we shall see in a while, Eq. (6)
is valid also in the case when X and Y have an odd number of atoms.

ECðiÞ ¼ 4 þ 2KfXgKfYg
KfGg ð6Þ

The right-hand side of Eq. (6) is independent of i, which is tantamount to the
claim of Rule 1.

To complete our considerations, we need to analyze also the case when X and Y
have an odd number of atoms. If so, then there exist only two types of Kekul�ee
structures, shown in Fig. 4. It is easily seen that in each individual Kekul�ee structure
exactly 4 �-electrons belong to each of the rings 1; 2; . . . ; h. Consequently,
ECðiÞ ¼ 4 for all i ¼ 1; 2; . . . ; h.

This conclusion is in harmony with Eq. (6), because if X and Y are of odd size,
then necessarily KfXg ¼ KfYg ¼ 0.

More Regularities for the �-Electron Content

From Eq. (6) it immediately follows:

Rule 2. If G is Kekul�eean, then for arbitrary X and Y , the �-electron content of
the hexagons 1; 2; . . . ; h of G is at least 4. It is equal to 4 if and only if the
fragments X and/or Y are non-Kekul�eean.

Rule 3. With the increasing length of the linear polyacene chain in G, the �-
electron contents of the hexagons 1; 2; . . . ; h monotonically decrease, approaching
a limit value equal to 4.

Fig. 3. The fragments encountered in connection with Eq. (5) and elsewhere

Fig. 4. The two types of Kekul�ee structures of the conjugated system G in the case when the fragments

X and Y are odd; in each particular Kekul�ee structure, each ring 1; 2; . . . ; h of G possesses four �-

electrons; therefore, the average of the �-electron count over all Kekul�ee structures is also equal to four
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Rule 3 is a consequence of the fact that KfXg and KfYg are independent of h,
whereas KfGg is a linear (increasing) function of h [14].

All the above stated regularities, as well as Eq. (6), are applicable also in the
special cases when either X or Y or both are missing. If so, one simply has to set
KfXg ¼ 1 and/or KfYg ¼ 1.

In particular, in the case of (unsubstituted) linear polyacenes (with hþ 2 hexa-
gons), we get Eqs. (7) and (8), the expressions previously reported in Ref. [5]. The
EC-values given in Table 1 pertain to the case h ¼ 5 (heptacene).

ECð1Þ ¼ ECð2Þ ¼ � � � ¼ ECðhÞ ¼ 4 þ 2

hþ 3
ð7Þ

ECðAÞ ¼ ECðBÞ ¼ 1

2

�
4ðhþ 2Þ þ 2 � h

�
4 þ 2

hþ 3

��
¼ 5 � h

hþ 3
ð8Þ

Concluding this paper we would like to point out that Rule 1 and its conse-
quences, Rules 2 and 3, seem to be the very first generally valid results in the
Balaban–Randi�cc theory of the distribution of �-electrons into rings of conjugated
molecules.
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