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Summary. A method for assessing the m-electron contents (EC) of rings of benzenoid hydrocarbons,
based on the examination of their Kekulé structures, was recently put forward by Balaban and Randic.
We now show that all hexagons belonging to a linear polyacene fragment of a conjugated hydrocarbon
(not necessarily benzenoid) have mutually equal EC-values.
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Introduction

In a series of recently published papers [1-4] Balaban and Randi¢ proposed a
theoretical method for (formally) distributing the m-electrons into the rings of
polycyclic conjugated molecules. Their approach was soon further elaborated by
other authors [5-8]. In Ref. [8] it was shown that the 7-electron content EC(R) of a
ring R can be computed by means of the Pauling bond orders as shown by Eq. (1)
where P, stands for the Pauling bond order of the carbon—carbon bond rs, whereas
>« and >, indicate, respectively, summation over bonds that solely belong to
the ring R, and over bonds that are shared between R and another ring.

EC(R)=2) P+ P (1)

The sum of the EC(R)-values of all rings is equal to the total number of -
electrons.

Recall that the Pauling bond order is defined by Eq. (2) [9, 10] where K is the
number of Kekulé structures of the underlying conjugated molecule, and K,y is the
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Fig. 1. Heptacene and its benzo-annelated derivatives, and the labeling of its hexagons; the respec-
tive m-electron contents are given in Table 1

number of Kekulé structures in which the bond rs is double.
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The condition K >0 is essential for the Balaban—Randi¢ definition of the -
electron content of a ring. In view of this, in what follows we assume that all
conjugated systems considered Kekuléan, i.e., possess at least one Kekulé structural
formula [10].

In Ref. [5] it was demonstrated that in the case of linear polyacenes, all hexa-
gons, except the two terminal hexagons, have equal EC-values. In a number of
catacondensed benzenoid molecules, whose m-electron contents were reported in
Ref. [2], an analogous regularity could be envisaged. Some typical examples of this
kind are given in Fig. 1 and Table 1. (One may observe that compounds 4 and §
have coinciding EC-values. This is to be expected in view of the fact that EC is
defined on the basis of Kekulé structures, and that 4 and 5 are isoarithmic species,
in which all Kekulé-structure-based properties necessarily coincide [11, 12].

In order to clarify this situation we have undertaken extensive numerical studies
of benzenoid molecules containing a linear polyacene fragment, after which it
became possible to establish the following general regularity.

Let X and Y be arbitrary conjugated hydrocarbon fragments, not necessarily
catacondensed and not necessarily benzenoid. Let G be a conjugated molecule, the
structure of which is depicted in Fig. 2.

Rule 1. If G is Kekuléan, then for arbitrary X and Y and for any /> 2, the
hexagons 1,2,...,h of G have equal m-electron contents.



On the Distribution of w-Electrons 715

Table 1. The m-electron contents of the rings of heptacene (1) and its benzo-annelated derivatives;
for notation see Fig. 1

Compound  EC(R;) EC(A) EC(B) EC(C) EC(D) EC(E) EC(F)
i=1,23,4,5
1 4.2500 43750 43750 - - - -
2 4.2667 28667 44000 54000 - - -
3 4.2759 13103 44138 54483 54483 - -
4 4.2857 2.8929  2.8929 53929 53929 - -
5 4.2857 2.8929  2.8929 53929 53929 - -
6 4.2963 13333 29074 54444 54444 53929 -
7 43077 13462 13462 54423 54423 54423 5.4423

r

Fig. 2. The general structure of a conjugated hydrocarbon containing a linear polyacene fragment
and the notation used in the proof of Rule 1; in the Kekulé structures of G in which the bond rg is
double, also the bonds marked by thick lines must be double

Verifying Rule 1

In order to demonstrate the validity of Rule 1 we shall compute the electron content
of the i-th ring of G, and show that its value is independent of i. Bearing in mind
Eq. (1) and the labeling of the atoms of the i-th ring, shown in Fig. 2, we get
Eq. (3).

EC(i) = 2(Ppg + Pup + Pys + Py) + (Pgr + Pu) (3)

The first term on the right-hand side of Eq. (3) is equal to 4. Namely, the sum of
Pauling bond orders over all bonds that terminate in an atom is equal to unity [13].
Therefore, P,, + P,, =1 and P,; + P; = 1. We thus have Eq. (4) and what re-
mains to be calculated is P, and Py,.

EC(i) = 4 + (P + Pu) (4)

Because G is assumed to be Kekuléan, the number of carbon atoms in the
fragments X and Y must be either both even or both odd. The interesting case is
when both X and Y have even number of atoms, which we examine first.

Using standard techniques for the enumeration of Kekulé structures [14, 15] it
can be shown that Eq. (5) is valid where the meaning of the symbols X, and Yj is
seen from Fig. 3.

K{G} = (h — 1) K{X} K{Y} + K{X} K{Yo} + K{Xo} K{Y} (5)
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Fig. 3. The fragments encountered in connection with Eq. (5) and elsewhere
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Fig. 4. The two types of Kekulé structures of the conjugated system G in the case when the fragments
X and Y are odd; in each particular Kekulé structure, each ring 1,2,... s of G possesses four 7-
electrons; therefore, the average of the 7-electron count over all Kekulé structures is also equal to four

In order to apply Eq. (2), in addition to K{G} we have to calculate K{G,,} and
K{G,}. If the bond pr is chosen to be double, then a number of other bonds of G
must also be double, see Fig. 2. Consequently, K{G,,} = K{X} K{Y}, ¢f. Figs. 2
and 3. By the very same argument, K{G,} = K{X} K{Y}. Substituting these
expressions back into Eq. (4) we arrive at our main result (Eq. (6)) where the denomi-
nator is given by Eq. (5). According to the notation explained in Fig. 2, the parameter
i in Eq. (6) may assume any value between 1 and /. As we shall see in a while, Eq. (6)
is valid also in the case when X and Y have an odd number of atoms.

2K{X}K{Y}

The right-hand side of Eq. (6) is independent of i, which is tantamount to the
claim of Rule 1.

To complete our considerations, we need to analyze also the case when X and Y
have an odd number of atoms. If so, then there exist only two types of Kekulé
structures, shown in Fig. 4. It is easily seen that in each individual Kekulé structure
exactly 4 m-electrons belong to each of the rings 1,2,...,h Consequently,
EC(i)=4foralli=1,2,...,h.

This conclusion is in harmony with Eq. (6), because if X and Y are of odd size,
then necessarily K{X} = K{Y} = 0.

EC(i) = 4 +

More Regularities for the m-Electron Content
From Eq. (6) it immediately follows:

Rule 2. If G is Kekuléan, then for arbitrary X and Y, the 7-electron content of
the hexagons 1,2,...,h of G is at least 4. It is equal to 4 if and only if the
fragments X and/or Y are non-Kekuléan.

Rule 3. With the increasing length of the linear polyacene chain in G, the 7-
electron contents of the hexagons 1,2,...,h monotonically decrease, approaching
a limit value equal to 4.
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Rule 3 is a consequence of the fact that K{X} and K{Y} are independent of A,
whereas K{G} is a linear (increasing) function of A [14].

All the above stated regularities, as well as Eq. (6), are applicable also in the
special cases when either X or Y or both are missing. If so, one simply has to set
K{X} =1 and/or K{Y} = 1.

In particular, in the case of (unsubstituted) linear polyacenes (with & + 2 hexa-
gons), we get Egs. (7) and (8), the expressions previously reported in Ref. [5]. The
EC-values given in Table 1 pertain to the case & = 5 (heptacene).

EC(l)ZEC(Z)Z'--:EC(h):4+% ™)

1 2 h
ECA)=ECB)=z|4h+2)+2—-h(d+— || =5——= 8
W =Bew) = s+ 2 n(44 25 )] =50 ®
Concluding this paper we would like to point out that Rule 1 and its conse-
quences, Rules 2 and 3, seem to be the very first generally valid results in the
Balaban—Randic¢ theory of the distribution of m-electrons into rings of conjugated
molecules.
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